Прямая $y=-9x$ является касательной к графику функции $24x^2+bx+6$. Найдите b, учитывая, что абсцисса точки касания меньше 0. |
На рисунке изображен график $y=f'(x)$ — производной функции f(x), определенной на интервале (-1;10). Найдите точку экстремума функции f(x), принадлежащую отрезку [0;7]. |
На рисунке изображен график $y=f'(x)$ — производной функции f(x), определенной на интервале (-10;5). Найдите промежутки убывания функции f(x). В ответе укажите длину наибольшего из них. |
На рисунке изображен график $y=f'(x)$ — производной функции f(x), определенной на интервале (-8;16). Найдите количество точек экстремума функции f(x), принадлежащих отрезку [-4;15]. |
На рисунке изображен график $y=f'(x)$ — производной функции f(x), определенной на интервале (-4;7). В какой точке отрезка [-3;1] функция f(x) принимает наименьшее значение? |
На рисунке изображен график функции $y=f(x)$, определенной на интервале (-2;10). Определите количество целых точек, в которых производная функции положительна. |
На рисунке изображен график функции $y=f(x)$, определенной на интервале (-5;5). Определите количество целых точек, в которых производная функции f(x) отрицательна. |
Прямая $y=9x-5$ является касательной к графику функции $12x^2-3x+c$. Найдите c. |
Материальная точка движется прямолинейно по закону $x(t)=t^2+7t+27$, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t=3c. |
Материальная точка движется прямолинейно по закону $x(t)=-t^3-8t^2+6t+2$, где x — расстояние от точки отсчета в метрах, t — время в секундах, измеренное с начала движения. Найдите ее скорость (в метрах в секунду) в момент времени t=3c. |