Правильная шестиугольная пирамида

Правильная шестиугольная пирамида — пирамида, в основании которой лежит правильный шестиугольник.

Обозначения

  • $SABCDEF$ — правильная шестиугольная пирамида
  • $O$ — центр основания пирамиды
  • $a$ — длина стороны основания пирамиды
  • $h$ — длина бокового ребра пирамиды
  • $S_{\text{осн.}}$ — площадь основания пирамиды
  • $V_{\text{пирамиды}}$ — объем пирамиды

Площадь основания пирамиды

В основаниях пирамиды находится правильный шестиугольник со стороной $a$. По свойствам правильного шестиугольника, площадь основания пирамиды равна $$ S_{\text{осн.}}=\frac{3\sqrt{3}}{2}\cdot a^2 $$

Правильный шестиугольник в основании пирамиды

По свойствам правильного шестиугольника, треугольники AOB, BOC, COD, DOE, EOF, FOA являются правильными треугольниками. Отсюда следует, что $$ AO=OD=EO=OB=CO=OF=a $$ Проводим отрезок AE, пересекающийся с отрезком CF в точке M. Треугольник AEO равнобедренный, в нём $AO=OE=a,\ \angle EOA=120^{\circ}$. По свойствам равнобедренного треугольника $$ AE=a\cdot\sqrt{2(1-\cos EOA)}=\sqrt{3}\cdot a $$ Аналогичным образом приходим к заключению, что $ AC=CE=\sqrt{3}\cdot a $, $FM=MO=\frac{1}{2}\cdot a$.

Находим $SO$

Прямая $SO$ является высотой пирамиды, поэтому $\angle SOF=90^{\circ}$. Треугольник $SOF$ прямоугольный, в нем $FO=a,\ FS=h$. По свойствам прямоугольного треугольника $$ SO=\sqrt{FS^2-FO^2}=\sqrt{h^2-a^2} $$

Объем пирамиды

Объем пирамиды вычисляется как треть произведения площади ее основания на ее высоту. Высотой правильной пирамиды является отрезок $SO$. В основании правильной шестиугольной призмы находится правильный шестиугольник, площадь которого нам известна. Получаем $$ V_{\text{пирамиды}}=\frac{1}{3}\cdot S_{\text{осн.}}\cdot SO=\frac{\sqrt{3}}{2}\cdot a^2 \cdot \sqrt{h^2-a^2} $$

Находим $ST$ и $TO$

Пусть точка $T$ является серединой ребра $AF$. Треугольник $AOF$ правильный, поэтому, по свойствам правильного треугольника $$ TO=\frac{\sqrt{3}}{2}\cdot a $$ Треугольник $STO$ прямоугольный, высота $SO$ равна $\sqrt{h^2-a^2}$. По теореме Пифагора $$ ST=\sqrt{SO^2+TO^2}=\sqrt{h^2-\frac{1}{4}\cdot a^2} $$

Категория: 

© 2011-2014, Bankege.ru